Localizations in Triangulated Categories and Model Categories

نویسنده

  • DAVID WHITE
چکیده

Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizing subcategory because L is a left adjoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomological Quotients and Smashing Localizations

The quotient of a triangulated category modulo a subcategory was defined by Verdier. Motivated by the failure of the telescope conjecture, we introduce a new type of quotients for any triangulated category which generalizes Verdier’s construction. Slightly simplifying this concept, the cohomological quotients are flat epimorphisms, whereas the Verdier quotients are Ore localizations. For any co...

متن کامل

Fakultät für Elektrotechnik , Informatik und Mathematik Subcategories of Triangulated Categories and the Smashing Conjecture

In this thesis the global structure of three classes of algebraic triangulated categories is investigated by describing their thick, localizing and smashing subcategories and by analyzing the Smashing Conjecture. We show that the Smashing Conjecture for the stable module category of a self-injective artin algebra A is equivalent to the statement that a class of model categories associated with ...

متن کامل

Triangulated categories without models

We exhibit examples of triangulated categories which are neither the stable category of a Frobenius category nor a full triangulated subcategory of the homotopy category of a stable model category. Even more drastically, our examples do not admit any non-trivial exact functors to or from these algebraic respectively topological triangulated categories. Introduction. Triangulated categories are ...

متن کامل

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

The axioms for n-angulated categories

Triangulated categories were introduced independently in algebraic geometry by Verdier [7, 8], based on ideas of Grothendieck, and in algebraic topology by Puppe [6]. These constructions have since played a crucial role in representation theory, algebraic geometry, commutative algebra, algebraic topology and other areas of mathematics (and even theoretical physics). Recently, Geiss, Keller and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016